Question 7

Is it possible for two vectors of different magnitudes to add to zero? Is it possible for three vectors of different magnitudes to add to zero? Explain.

Solution

It's not possible for two vectors of different magnitudes to add to zero because they can't be antiparallel. And if they're not antiparallel, there will be a nonzero component perpendicular to one of the vectors. This is a geometric argument. For an algebraic argument, consider two vectors, $\overrightarrow{\mathbf{A}}=\left\langle A_{x}, A_{y}\right\rangle$ and $\overrightarrow{\mathbf{B}}=\left\langle B_{x}, B_{y}\right\rangle$. For them to add to zero, their components would have to add to zero.

$$
\left\{\begin{array}{l}
A_{x}+B_{x}=0 \\
A_{y}+B_{y}=0
\end{array}\right.
$$

Solve for B_{x} and B_{y}.

$$
\left\{\begin{array}{l}
B_{x}=-A_{x} \\
B_{y}=-A_{y}
\end{array}\right.
$$

As a result, the two vectors can add to zero as long as $\overrightarrow{\mathbf{A}}=\left\langle A_{x}, A_{y}\right\rangle$ and $\overrightarrow{\mathbf{B}}=\left\langle-A_{x},-A_{y}\right\rangle$. But these two vectors have the same magnitude, so it's not possible. Suppose now that there's a third vector $\overrightarrow{\mathbf{C}}=\left\langle C_{x}, C_{y}\right\rangle$. For them to add to zero, their components would have to add to zero.

$$
\left\{\begin{array}{l}
A_{x}+B_{x}+C_{x}=0 \\
A_{y}+B_{y}+C_{y}=0
\end{array}\right.
$$

Solve for C_{x} and C_{y}.

$$
\left\{\begin{array}{l}
C_{x}=-A_{x}-B_{x} \\
C_{y}=-A_{y}-B_{y}
\end{array}\right.
$$

As a result, the three vectors can add to zero as long as $\overrightarrow{\mathbf{A}}=\left\langle A_{x}, A_{y}\right\rangle$ and $\overrightarrow{\mathbf{B}}=\left\langle B_{x}, B_{y}\right\rangle$ and $\overrightarrow{\mathbf{C}}=\left\langle-A_{x}-B_{x},-A_{y}-B_{y}\right\rangle$. So it is possible for three vectors to add to zero while having different magnitudes.

